2016
Henager, Samuel H; Chu, Nam; Chen, Zan; Bolduc, David; Dempsey, Daniel R; Hwang, Yousang; Wells, James; Cole, Philip A
Enzyme-catalyzed expressed protein ligation Journal Article
In: Nat Methods, vol. 13, no. 11, pp. 925-927, 2016, ISSN: 1548-7105.
Abstract | Links | BibTeX | Tags: Animals, Bacillus subtilis, Blotting, Catalytic Domain, Cells, Cultured, Cysteine, Escherichia coli, Fibroblasts, Mice, Mutagenesis, Peptide Fragments, Peptide Synthases, Phosphorylation, Post-Translational, Protein Processing, PTEN Phosphohydrolase, Recombinant Proteins, Site-Directed, Subtilisins, Western
@article{1299949,
title = {Enzyme-catalyzed expressed protein ligation},
author = {Samuel H Henager and Nam Chu and Zan Chen and David Bolduc and Daniel R Dempsey and Yousang Hwang and James Wells and Philip A Cole},
doi = {10.1038/nmeth.4004},
issn = {1548-7105},
year = {2016},
date = {2016-11-01},
journal = {Nat Methods},
volume = {13},
number = {11},
pages = {925-927},
abstract = {Expressed protein ligation is a valuable method for protein semisynthesis that involves the reaction of recombinant protein C-terminal thioesters with N-terminal cysteine (N-Cys)-containing peptides, but the requirement of a Cys residue at the ligation junction can limit the utility of this method. Here we employ subtiligase variants to efficiently ligate Cys-free peptides to protein thioesters. Using this method, we have more accurately determined the effect of C-terminal phosphorylation on the tumor suppressor protein PTEN.},
keywords = {Animals, Bacillus subtilis, Blotting, Catalytic Domain, Cells, Cultured, Cysteine, Escherichia coli, Fibroblasts, Mice, Mutagenesis, Peptide Fragments, Peptide Synthases, Phosphorylation, Post-Translational, Protein Processing, PTEN Phosphohydrolase, Recombinant Proteins, Site-Directed, Subtilisins, Western},
pubstate = {published},
tppubtype = {article}
}
2014
Leurs, Ulrike; Lohse, Brian; Rand, Kasper D; Ming, Shonoi; Riise, Erik S; Cole, Philip A; Kristensen, Jesper L; Clausen, Rasmus P
Substrate- and cofactor-independent inhibition of histone demethylase KDM4C Journal Article
In: ACS Chem Biol, vol. 9, no. 9, pp. 2131-8, 2014, ISSN: 1554-8937.
Abstract | Links | BibTeX | Tags: Amino Acid Sequence, Catalytic Domain, Cell Line, Coenzymes, Deuterium Exchange Measurement, Enzyme Inhibitors, High-Throughput Screening Assays, Histone Demethylases, Humans, Inhibitory Concentration 50, Jumonji Domain-Containing Histone Demethylases, Molecular Sequence Data, Peptide Library
@article{1299981,
title = {Substrate- and cofactor-independent inhibition of histone demethylase KDM4C},
author = {Ulrike Leurs and Brian Lohse and Kasper D Rand and Shonoi Ming and Erik S Riise and Philip A Cole and Jesper L Kristensen and Rasmus P Clausen},
doi = {10.1021/cb500374f},
issn = {1554-8937},
year = {2014},
date = {2014-09-01},
journal = {ACS Chem Biol},
volume = {9},
number = {9},
pages = {2131-8},
abstract = {Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging, as the active sites of KDM1A-B and KDM4A-D histone demethylases are highly conserved. Most inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide sequence or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation, and chemical modifications. Hydrogen/deuterium exchange mass spectrometry revealed that the peptide-based inhibitors target KDM4C through substrate-independent interactions located on the surface remote from the active site within less conserved regions of KDM4C. The sites discovered in this study provide a new approach of targeting KDM4C through substrate- and cofactor-independent interactions and may be further explored to develop potent selective inhibitors and biological probes for the KDM4 family.},
keywords = {Amino Acid Sequence, Catalytic Domain, Cell Line, Coenzymes, Deuterium Exchange Measurement, Enzyme Inhibitors, High-Throughput Screening Assays, Histone Demethylases, Humans, Inhibitory Concentration 50, Jumonji Domain-Containing Histone Demethylases, Molecular Sequence Data, Peptide Library},
pubstate = {published},
tppubtype = {article}
}
Maksimoska, Jasna; Segura-Peña, Dario; Cole, Philip A; Marmorstein, Ronen
Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues Journal Article
In: Biochemistry, vol. 53, no. 21, pp. 3415-22, 2014, ISSN: 1520-4995.
Abstract | Links | BibTeX | Tags: Acetyl Coenzyme A, Catalytic Domain, Coenzyme A, Humans, Models, Molecular, p300-CBP Transcription Factors, Protein Binding, Protein Conformation
@article{1299982,
title = {Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues},
author = {Jasna Maksimoska and Dario Segura-Peña and Philip A Cole and Ronen Marmorstein},
doi = {10.1021/bi500380f},
issn = {1520-4995},
year = {2014},
date = {2014-06-01},
journal = {Biochemistry},
volume = {53},
number = {21},
pages = {3415-22},
abstract = {The p300 and CBP transcriptional coactivator paralogs (p300/CBP) regulate a variety of different cellular pathways, in part, by acetylating histones and more than 70 non-histone protein substrates. Mutation, chromosomal translocation, or other aberrant activities of p300/CBP are linked to many different diseases, including cancer. Because of its pleiotropic biological roles and connection to disease, it is important to understand the mechanism of acetyl transfer by p300/CBP, in part so that inhibitors can be more rationally developed. Toward this goal, a structure of p300 bound to a Lys-CoA bisubstrate HAT inhibitor has been previously elucidated, and the enzyme’s catalytic mechanism has been investigated. Nonetheless, many questions underlying p300/CBP structure and mechanism remain. Here, we report a structural characterization of different reaction states in the p300 activity cycle. We present the structures of p300 in complex with an acetyl-CoA substrate, a CoA product, and an acetonyl-CoA inhibitor. A comparison of these structures with the previously reported p300/Lys-CoA complex demonstrates that the conformation of the enzyme active site depends on the interaction of the enzyme with the cofactor, and is not apparently influenced by protein substrate lysine binding. The p300/CoA crystals also contain two poly(ethylene glycol) moieties bound proximal to the cofactor binding site, implicating the path of protein substrate association. The structure of the p300/acetonyl-CoA complex explains the inhibitory and tight binding properties of the acetonyl-CoA toward p300. Together, these studies provide new insights into the molecular basis of acetylation by p300 and have implications for the rational development of new small molecule p300 inhibitors.},
keywords = {Acetyl Coenzyme A, Catalytic Domain, Coenzyme A, Humans, Models, Molecular, p300-CBP Transcription Factors, Protein Binding, Protein Conformation},
pubstate = {published},
tppubtype = {article}
}