2017
Esadze, Alexandre; Rodriguez, Gaddiel; Weiser, Brian P; Cole, Philip A; Stivers, James T
Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells Journal Article
In: Nucleic Acids Res, vol. 45, no. 21, pp. 12413-12424, 2017, ISSN: 1362-4962.
Abstract | Links | BibTeX | Tags: Cell Line, DNA, DNA Glycosylases, Humans, Uracil
@article{1299936,
title = {Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells},
author = {Alexandre Esadze and Gaddiel Rodriguez and Brian P Weiser and Philip A Cole and James T Stivers},
doi = {10.1093/nar/gkx848},
issn = {1362-4962},
year = {2017},
date = {2017-12-01},
journal = {Nucleic Acids Res},
volume = {45},
number = {21},
pages = {12413-12424},
abstract = {DNA ’sliding’ by human repair enzymes is considered to be important for DNA damage detection. Here, we transfected uracil-containing DNA duplexes into human cells and measured the probability that nuclear human uracil DNA glycosylase (hUNG2) excised two uracil lesions spaced 10-80 bp apart in a single encounter without escaping the micro-volume containing the target sites. The two-site transfer probabilities were 100% and 54% at a 10 and 40 bp spacing, but dropped to only 10% at 80 bp. Enzyme trapping experiments suggested that site transfers over 40 bp followed a DNA ’hopping’ pathway in human cells, indicating that authentic sliding does not occur even over this short distance. The transfer probabilities were much greater than observed in aqueous buffers, but similar to in vitro measurements in the presence of polymer crowding agents. The findings reveal a new role for the crowded nuclear environment in facilitating DNA damage detection.},
keywords = {Cell Line, DNA, DNA Glycosylases, Humans, Uracil},
pubstate = {published},
tppubtype = {article}
}
2016
Henry, Ryan A; Mancuso, Pietro; Kuo, Yin-Ming; Tricarico, Rossella; Tini, Marc; Cole, Philip A; Bellacosa, Alfonso; Andrews, Andrew J
Interaction with the DNA Repair Protein Thymine DNA Glycosylase Regulates Histone Acetylation by p300 Journal Article
In: Biochemistry, vol. 55, no. 49, pp. 6766-6775, 2016, ISSN: 1520-4995.
Abstract | Links | BibTeX | Tags: Acetylation, Animals, Cell Line, Cells, Cultured, DNA Repair, E1A-Associated p300 Protein, Histones, Knockout, Mice, Thymine DNA Glycosylase
@article{1299948,
title = {Interaction with the DNA Repair Protein Thymine DNA Glycosylase Regulates Histone Acetylation by p300},
author = {Ryan A Henry and Pietro Mancuso and Yin-Ming Kuo and Rossella Tricarico and Marc Tini and Philip A Cole and Alfonso Bellacosa and Andrew J Andrews},
doi = {10.1021/acs.biochem.6b00841},
issn = {1520-4995},
year = {2016},
date = {2016-12-01},
journal = {Biochemistry},
volume = {55},
number = {49},
pages = {6766-6775},
abstract = {How protein-protein interactions regulate and alter histone modifications is a major unanswered question in epigenetics. The histone acetyltransferase p300 binds thymine DNA glycosylase (TDG); utilizing mass spectrometry to measure site-specific changes in histone acetylation, we found that the absence of TDG in mouse embryonic fibroblasts leads to a reduction in the rate of histone acetylation. We demonstrate that TDG interacts with the CH3 domain of p300 to allosterically promote p300 activity to specific lysines on histone H3 (K18 and K23). However, when TDG concentrations approach those of histones, TDG acts as a competitive inhibitor of p300 histone acetylation. These results suggest a mechanism for how histone acetylation is fine-tuned via interaction with other proteins, while also highlighting a connection between regulators of two important biological processes: histone acetylation and DNA repair/demethylation.},
keywords = {Acetylation, Animals, Cell Line, Cells, Cultured, DNA Repair, E1A-Associated p300 Protein, Histones, Knockout, Mice, Thymine DNA Glycosylase},
pubstate = {published},
tppubtype = {article}
}
2015
Taylor, Martin S; Dempsey, Daniel R; Hwang, Yousang; Chen, Zan; Chu, Nam; Boeke, Jef D; Cole, Philip A
Mechanistic analysis of ghrelin-O-acyltransferase using substrate analogs Journal Article
In: Bioorg Chem, vol. 62, pp. 64-73, 2015, ISSN: 1090-2120.
Abstract | Links | BibTeX | Tags: Acyltransferases, Amino Acid Sequence, Animals, Baculoviridae, Biotin, Cell Line, Enzyme Assays, Genetic Vectors, Ghrelin, Hydrogen-Ion Concentration, Mice, Models, Molecular
@article{1299970,
title = {Mechanistic analysis of ghrelin-O-acyltransferase using substrate analogs},
author = {Martin S Taylor and Daniel R Dempsey and Yousang Hwang and Zan Chen and Nam Chu and Jef D Boeke and Philip A Cole},
doi = {10.1016/j.bioorg.2015.07.003},
issn = {1090-2120},
year = {2015},
date = {2015-10-01},
journal = {Bioorg Chem},
volume = {62},
pages = {64-73},
abstract = {Ghrelin-O-Acyltransferase (GOAT) is an 11-transmembrane integral membrane protein that octanoylates the metabolism-regulating peptide hormone ghrelin at Ser3 and may represent an attractive target for the treatment of type II diabetes and the metabolic syndrome. Protein octanoylation is unique to ghrelin in humans, and little is known about the mechanism of GOAT or of related protein-O-acyltransferases HHAT or PORC. In this study, we explored an in vitro microsomal ghrelin octanoylation assay to analyze its enzymologic features. Measurement of Km for 10-mer, 27-mer, and synthetic Tat-peptide-containing ghrelin substrates provided evidence for a role of charge interactions in substrate binding. Ghrelin substrates with amino-alanine in place of Ser3 demonstrated that GOAT can catalyze the formation of an octanoyl-amide bond at a similar rate compared with the natural reaction. A pH-rate comparison of these substrates revealed minimal differences in acyltransferase activity across pH 6.0-9.0, providing evidence that these reactions may be relatively insensitive to the basicity of the substrate nucleophile. The conserved His338 residue was required both for Ser3 and amino-Ala3 ghrelin substrates, suggesting that His338 may have a key catalytic role beyond that of a general base.},
keywords = {Acyltransferases, Amino Acid Sequence, Animals, Baculoviridae, Biotin, Cell Line, Enzyme Assays, Genetic Vectors, Ghrelin, Hydrogen-Ion Concentration, Mice, Models, Molecular},
pubstate = {published},
tppubtype = {article}
}
2014
Leurs, Ulrike; Lohse, Brian; Rand, Kasper D; Ming, Shonoi; Riise, Erik S; Cole, Philip A; Kristensen, Jesper L; Clausen, Rasmus P
Substrate- and cofactor-independent inhibition of histone demethylase KDM4C Journal Article
In: ACS Chem Biol, vol. 9, no. 9, pp. 2131-8, 2014, ISSN: 1554-8937.
Abstract | Links | BibTeX | Tags: Amino Acid Sequence, Catalytic Domain, Cell Line, Coenzymes, Deuterium Exchange Measurement, Enzyme Inhibitors, High-Throughput Screening Assays, Histone Demethylases, Humans, Inhibitory Concentration 50, Jumonji Domain-Containing Histone Demethylases, Molecular Sequence Data, Peptide Library
@article{1299981,
title = {Substrate- and cofactor-independent inhibition of histone demethylase KDM4C},
author = {Ulrike Leurs and Brian Lohse and Kasper D Rand and Shonoi Ming and Erik S Riise and Philip A Cole and Jesper L Kristensen and Rasmus P Clausen},
doi = {10.1021/cb500374f},
issn = {1554-8937},
year = {2014},
date = {2014-09-01},
journal = {ACS Chem Biol},
volume = {9},
number = {9},
pages = {2131-8},
abstract = {Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging, as the active sites of KDM1A-B and KDM4A-D histone demethylases are highly conserved. Most inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide sequence or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation, and chemical modifications. Hydrogen/deuterium exchange mass spectrometry revealed that the peptide-based inhibitors target KDM4C through substrate-independent interactions located on the surface remote from the active site within less conserved regions of KDM4C. The sites discovered in this study provide a new approach of targeting KDM4C through substrate- and cofactor-independent interactions and may be further explored to develop potent selective inhibitors and biological probes for the KDM4 family.},
keywords = {Amino Acid Sequence, Catalytic Domain, Cell Line, Coenzymes, Deuterium Exchange Measurement, Enzyme Inhibitors, High-Throughput Screening Assays, Histone Demethylases, Humans, Inhibitory Concentration 50, Jumonji Domain-Containing Histone Demethylases, Molecular Sequence Data, Peptide Library},
pubstate = {published},
tppubtype = {article}
}
0000
Cao, Jia; Peng, Jinghua; An, Hongying; He, Qiyi; Boronina, Tatiana; Guo, Shaodong; White, Morris F; Cole, Philip A; He, Ling
Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity Journal Article
In: Nat Commun, vol. 8, no. 1, pp. 131, 0000, ISSN: 2041-1723.
Abstract | Links | BibTeX | Tags: Animals, Cell Line, E1A-Associated p300 Protein, Endoplasmic Reticulum Stress, Endotoxemia, Gene Expression Profiling, Immunoblotting, Inbred C57BL, Insulin, Insulin Resistance, Lipopolysaccharides, Liver, Male, Membrane Proteins, Mice, Obese, Obesity, Protein-Serine-Threonine Kinases, Receptor, Signal Transduction, Tumor, X-Box Binding Protein 1
@article{1299941,
title = {Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity},
author = {Jia Cao and Jinghua Peng and Hongying An and Qiyi He and Tatiana Boronina and Shaodong Guo and Morris F White and Philip A Cole and Ling He},
doi = {10.1038/s41467-017-00163-w},
issn = {2041-1723},
journal = {Nat Commun},
volume = {8},
number = {1},
pages = {131},
abstract = {Diabetes and obesity are characterized by insulin resistance and chronic low-grade inflammation. An elevated plasma concentration of lipopolysaccharide (LPS) caused by increased intestinal permeability during diet-induced obesity promotes insulin resistance in mice. Here, we show that LPS induces endoplasmic reticulum (ER) stress and protein levels of P300, an acetyltransferase involved in glucose production. In high-fat diet fed and genetically obese ob/ob mice, P300 translocates from the nucleus into the cytoplasm of hepatocytes. We also demonstrate that LPS activates the transcription factor XBP1 via the ER stress sensor IRE1, resulting in the induction of P300 which, in turn, acetylates IRS1/2, inhibits its association with the insulin receptor, and disrupts insulin signaling. Pharmacological inhibition of P300 acetyltransferase activity by a specific inhibitor improves insulin sensitivity and decreases hyperglycemia in obese mice. We suggest that P300 acetyltransferase activity may be a promising therapeutic target for the treatment of obese patients.Elevated plasma LPS levels have been associated with insulin resistance. Here Cao et al. show that LPS induces ER stress and P300 activity via the XBP1/IRE1 pathway. P300 acetylates IRS1/2 and inhibits its binding with the insulin receptor. The consequent impairment of insulin signaling can be rescued by pharmacological inhibition of P300.},
keywords = {Animals, Cell Line, E1A-Associated p300 Protein, Endoplasmic Reticulum Stress, Endotoxemia, Gene Expression Profiling, Immunoblotting, Inbred C57BL, Insulin, Insulin Resistance, Lipopolysaccharides, Liver, Male, Membrane Proteins, Mice, Obese, Obesity, Protein-Serine-Threonine Kinases, Receptor, Signal Transduction, Tumor, X-Box Binding Protein 1},
pubstate = {published},
tppubtype = {article}
}